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dislocation density. If it is further assumed that, following Gilman, the

dislocation velocities are given by,40

v = v* exp =D/t

where v* is the Timiting dislocation velocity, D is a parameter called the
drag stress, and t is the shear stress, the equations above can be combined
and integrated to give the peak elastic stress as a function of distance of
travel and impact stress.68 Comparison of the data then yields a set of
compatible values for N0 and D for a given impact stress.

The most detailed study of elastic precursor decay has been per-
formed on Armco iron by Tay]or.40 His results are shown in Fig. 16. Reasonable
values of N0 and D do indeed give a good fit to these data, lending support to
the theoretical model. Johnson, however, has recently pointed out that Taylor
assumed that only one slip system of several possible systems was active in
the (polycrystalline) iron.67 If all systems are taken into account through
an averaging process the necessary dislocation density is increased by a
factor of about five. This density seems somewhat high compared to that
obtained from independent measurements; consequently, the validity of the
model is still somewhat tenuous. Kelly and Gillis point out that under the
right conditions one might be able to discriminate between various disloca-

tion models by experiments of this type.68

Precursor decay has also been studied in iron by Ivanov, et a1,69

in quartzite by Johnson,39 and in aluminum by Barker, et a1.36

Jones and Holland have studied the effect of grain size on the
Hugoniot elastic T1imit in mild stee].70 Although static tensile tests showed
marked differences in the upper and lower yield point with varying grain size,
no effect on the Hugoniot elastic T1imit was observed. They conclude that
under the impact-loading conditions employed dislocations do not move far
enough to encounter grain boundaries -- in contrast to the case of static
yielding. The dynamic yield points, moreover, were two to three times those
of the static experiments. They have also observed Bauschinger effects in

pre-strained specimens.7]




Porous Solids

There is considerable interest in shock propagation in porous
solids, not only because equation of state data can be obtained over a wide
range of densities and internal energies, as mentioned above, but also
because porous solids possess excellent shock buffering characteristics.
Hence, they can be used for the protection of structures from shock damage.

The collapse of pore space leads to large losses of internal
energy as mechanical energy. In a steady state shock the internal energy
is given by Eq. (3):

E-~ e = i{Rap YOV W) /2 (3)
The compressed specific volume is not highly sensitive to the energy; conse-
quently, to a first approximation we can neglect the energy dependence of
the P-V curve and visualize the energy loss as indicated in Fig. 17.

In the solid material, with initial volume VS, a steady shock
to pressure P.| carries the material along the Rayleigh Tine joining P] and
Vs‘ The triangular area under the Rayleigh line represents the internal
energy of the shocked state. The portion of this internal energy recoverable
as mechanical energy is approximately the area under the R-H curve. Hence
the mechanical energy loss is the sliver-shaped area between the Rayleigh
line and the associated R-H curve. Clearly, this area increases substantially

with V0 as the porosity is increased.

The mechanisms for energy loss cannot be precisely stated because
the solid is three-dimensional on the scale of the pore size. However, the
principal mechanism is probably initially the conversion of directed kinetic
energy in the propagation direction to acoustic energy propagating in random
directions; various dissipative mechanisms then convert this energy to heat.

Thouvenin has proposed a one-dimensional model (plate-gap model)
for a porous solid which allows no mechanism for energy 1osses.50 Consequently,




